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ABSTRACT

The concept of virtual cellular manufacturing system (VCMS) is finding acceptance among researchers as an extension to group
technology. In fact, in order to realize benefits of cellular manufacturing system in the functional layout, the VCMS creates
provisional groups of resources (machines, parts and workers) in the production planning and control system. This paper
develops a mathematical model to design the VCMS under a dynamic environment with a more integrated approach where
production planning, system reconfiguration and workforce requirements decisions are incorporated. The advantages of the
proposed model are as follows: considering the operations sequence, alternative process plans for part types, machine time-
capacity, worker time-capacity, cross-training, lot splitting, maximal cell size, balanced workload for cells and workers. An
efficient linear programming embedded particle swarm optimization algorithm is used to solve the proposed model. The
algorithm searches over the 0-1 integer variables and for each 0-1 integer solution visited; corresponding values of integer
variables are determined by solving a linear programming sub-problem using the simplex algorithm. Numerical examples show
that the proposed method is efficient and effective in searching for near optimal solutions.

RESUMEN

El concepto de sistema de manufactura celular virtual (SMCV) estd siendo aceptado entre los investigadores como una
extension de la tecnologia de grupos. De hecho, para hacer realidad los beneficios del sistema de manufactura celular en el
disefio funcional, el SMCV crea grupos provisionales de recursos (maquinas, partes y trabajadores) en la planificacion de la
produccién y el sistema de control. En el presente trabajo se describe el desarrollo de un modelo matematico para disefiar el
SMCV en el marco de un entorno dindmico con un enfoque mas integrado en donde se incorporan la planificacion de la
produccidn, la reconfiguracion del sistema y las decisiones relacionadas con los requisitos de la fuerza de trabajo. Las ventajas
del modelo propuesto son las siguientes: considera la secuencia de operaciones, planes de proceso alternativos segun los tipos
de partes, tiempo de trabajo de la maquina, tiempo de trabajo del trabajador, capacitacion mixta, division del trabajo, tamafio
maximo de la célula y carga de trabajo balanceada para las células y trabajadores. Para resolver el modelo propuesto se usa un
algoritmo eficiente de optimizacidén por enjambre de particulas embebidas de programacion lineal. El algoritmo busca en las
variables enteras 0-1 y cada variable entera 0-1 visitada; los valores correspondientes de las variables enteras se determinan
resolviendo una parte de un problema de programacion lineal por medio del algoritmo simple. Mediante ejemplos numéricos se
demuestra que el método propuesto es eficiente y efectivo en la busqueda de soluciones casi éptimas.

Keywords: Dynamic virtual cellular manufacturing system; production planning; particle swarm optimization; linear
programming

1. Introduction flexibility by utilizing the production control

system. Identifying logical groups of resources
The Virtual cellular manufacturing system (VCMS)  within the production control system, offers the
belongs to the family of modern production possibility of achieving advantages of cellular
methods, which many industrial sectors have used = manufacturing in situations where traditional
beneficially in recent years. A VCMS is aimed at  cellular manufacturing systems may not be
increasing the efficiency of production and system  feasible. Resulting advantages may include the

Journal of Applied Research and Technology




Linear programming embedded particle swarm optimization for solving an extended model of dynamic virtual cellular manufacturing systems, H. Rezazadeh et al, 83-108

improved flow performance, higher efficiency,
simplified production control and better quality. A
schema of VCMS including machine and worker
sharing between virtual cells for two consecutive
periods is shown in Fig.l. In this figure, it is
assumed that nine machines and six workers exist
in layout. Because of the processing requirements,
the logical grouping of machines and workers
(virtual cells) is changed from period 1 to period 2.

Research on VCMS has gained momentum during
the last decade. Recent studies on VCMS have
focused on improvements in queue-related
performance measure of the job shop. The
emphasis has been on the performance evaluation
of VCMS compared to traditional functional and
cellular layout. There has been little research until
now on the design of VCMS forming the subject of
this paper. The objective of this paper is to
propose a new mathematical model for integrated
virtual cellular manufacturing system designing
with production planning, dynamic
reconfiguration and workforce requirements.

The remainder of this paper is organized as
follows: In Section 2, we review relevant literature
on the VCMS. Section 3 presents the
mathematical formulation for the VCMS. In
Section 4, we introduce a brief review of particle
swarm optimization. Implementation of linear
programming embedded particle swarm
optimization is described in Section 5.
Computational results are reported in Section 6
and the conclusion is given in Section 7.

2. Literature review

The concept of VCMS was introduced at the
National Bureau of Standards (NBS) to address the
specific control problems found in the design
phase of the automated manufacturing batches of
machined parts (Simpson et al. 1982). Montreuil
et al (1992) introduced the idea that the logical
system can be separated from the physical
system, i.e., it is not necessary to have a functional
organization if a process layout is in place and that
a product organization is not exclusively
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Figure 1. A schema of changing virtual cells in relation to changing
production needs
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associated with a product layout. Other paper in
this stream presents a link with the eventual
ability to move resources to accommodate to
changing manufacturing requirements, i.e. the
possibility to use dynamic cells (Rheault et al.
(1995), Drolet et al. (1996)). In this sense, a VCMS
is to be associated with a specific parameter range
of the dynamic facility layout problem (see, for
example, Balakrishnan and Chang (1998)) i.e. ,
when the product mix and volumes change so
much in relation to the relocation equipment
costs so that changing the facility layout is never
worth the effort. Vakharia et al. (1999) compared
the performance of virtual cells and multi-stage
flow shops through analytical approximations.
Some advantages of this study were the number
of processing stages, the number of machines per
processing stage, the batch size and ratio of setup
to run time per batch for the implementation of
the virtual cells. Ratchev (2001) proposed a four
phase procedure for the virtual cell formation. In
the first phase, processing alternatives are
generated; in the second phase, the capability of
boundaries of the virtual cell is defined; in the
third phase, machine tools are selected, and
finally, in the fourth phase, the performance of
the system is evaluated. Sarker and Li (2001)
suggested an approach for virtual cell formation
with special emphasis on job routing and
scheduling rather than on cell sharing. The basic
feature of their approach lies in the identification
of a sequence of machines to minimize a job
throughout time in a multistage production
system where there are multiple identified
machines per stage and a job can only be assigned
to one machine per stage. Thomalla (2000)
addressed the same problem, but with the
objective of minimizing tardiness. In this work, the
problem is solved by using a Lagrangian relaxation
approach. Irani et al. (1993) proposed a two-stage
procedure which was a combination of the graph
theoretic approach and the mathematical
programming approach for forming virtual
manufacturing cells. Subash et al. (2000) proposed

a framework for virtual cell formation. In essence,
the authors tested several clustering algorithms
for the formation of virtual cells. Saad et al.
(2002) also presented an integrated framework in
a three-step approach for production planning
and cell formation. They studied the possibility of
using virtual cells as a reconfiguration strategy.
Besides the above issues, there is a number of
papers published on virtual cell formation. Most
of them are controlled or simulation-oriented.
Furthermore, those papers that specially address
the formation of virtual cells are dedicated to
special part families. On the other hand, the
aspects of shared cell formulation have not
received much attention. Mak and Wang (2002)
proposed a new genetic-based scheduling
algorithm to minimize the total material and
component traveling distance incurred when
manufacturing the product with the review to set
up virtual manufacturing cells and to formulate
feasible production schedules for all
manufacturing  operations. The  proposed
algorithm differs from the conventional genetic
algorithms in that the populations of the
candidate solutions consist of individuals from
various age-groups, and each individual s
incorporated with an age attribute to enable its
birth and survival rates to be governed by
predefined ageing patterns. In 2005, Mak and et
al. improved their methodology by adding another
objective of minimizing the sum of tardiness of all
products. Baykasoglu (2003) proposed a simulated
annealing algorithm for developing a distributed
layout for a virtual manufacturing cell. Nomden et
al. (2006) classified the virtual cell formation
procedures into three main classes: design,
operation and empirical. A comprehensive
taxonomy and review of prior research in the area
of VCMS can be found in their study. Nomden et
al. (2008) studied parallel machine shops that
implemented the concept of VCMS for production
control. They strived to have a more
comprehensive study on the relevance of routing
configuration in VCMS.
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Some authors proposed that workforce
requirements should be taken into account at the
cell design stage. Min and Shin (1993) and Suresh
and Slomp (2001) proposed cell design procedures
in which the complex cell formation problem is
solved in two or more phases. The last phase in
both procedures concerns workforce
requirements. A basic assumption in the problem
formulation of Min and Shin (1993) is that workers
are linked with the various parts by means of so-
called ‘skill matching factors’. A skill matching
factor indicates to what extent a worker is able to
produce a part. These factors are used for the
optimization of the worker assignment problem.
Cross-training issues were not considered in this
work. Suresh and Slomp (2001), in the last phase
of their procedure, address various workforce
requirements such as the partitioning of
functionally specialized worker pools and the
required additional training of workers. The need
for cross-training is predetermined in their
approach by setting minimum and maximum
levels for the multi-functionality of workers and
the redundancy of machines. They do not
determine the need for cross-training analytically.
Suer (1996) presented a two-phase hierarchical
methodology for operator assignment and cell
loading in worker-intensive manufacturing cells.
Here, the major concern is determination of the
number of workers in each cell and the
assignment of workers to specific operations in
such a way that worker productivity is maximal. A
functional arrangement of tasks was assumed in
each cell without considering training and multi-
functionality problems. Askin and Huang (2001)
focused on the relocation of workers into cells and
the training needed for effective cellular
manufacturing. They proposed a mixed integer,
goal-programming model for guiding the worker
assignment and training process. The model
integrates psychological, organizational, and
technical factors. They presented greedy
heuristics as means to solve the problem. Askin
and Huang (2001) assumed that the required skills

are cell dependent and that workers may need
some additional training, again  without
considering cross-training issues. Norman et al.
(2002) presented a mixed integer programming
formulation for the assignment of workers to
operations in a manufacturing cell. Their
formulation permits the ability to change the skill
levels of workers by providing them with
additional training and training decisions taken in
order to balance the productivity and output
quality of a manufacturing cell and the training
costs. Slomp et al. (2004, 2005) presented a
framework for the design of VMCS, specifically
accounting for the limited availability of workers
and worker skills. They propose a goal
programming formulation that first groups jobs
and machines and then assigns workers to the
groups to form VMCS. The objective is to use the
capacity as efficiently as possible, but also to have
VMCS in places that are as independent as
possible.

3. Problem formulation

In this section, we develop a new mixed-integer
programming model to design the VCMS under a
dynamic environment with a more integrated
approach where production planning, system
reconfiguration and workforce requirements
decisions are incorporated. Figure 2 presents a
graphical description of the model.

The model is formulated under the following
assumption.

3.1 Assumptions

1. Each part type has a number of operations that
must be processed respectively as numbered.

2. The processing time for all operations of a part
type on different machine types are known
and deterministic.
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Figure 2. Structure of the model

. The demand for each part type in each period
is known and deterministic.

. The capabilities and time-capacity of each
machine type are known and constant over the
planning horizon.

. The skills and time—capacity of each worker are
known and constant over the planning horizon.

. All workers are assumed to be multi-functional.
Thus, each worker can be able to operate at
least two machines.

. The ability of each worker for training on
individual machines is known and constant
over the planning horizon.

. The manufacturing cost of each machine type
is known. The manufacturing cost implies the
operating cost that is independent of the
workload allocated to machine.

. The distance between two machine locations
in layout is first known as a prior.

10.All machine types are assumed to be
multipurpose. Thus, each part type can have
several alternative process routing with
different processing times.

11.Backorders are not allowed. All demands must
be satisfied in the given period.

12.Finished parts inventory is allowed in the
production system.

3.2 Notation

Indexes

h index for time periods (h=1,...,H)

c index for virtual cells (c=1,...,C)

w  index for workers (w=1,..., W)

m  index for machine types (m=1,...,M)

p index for part types (p=1,...,P)

j index for operations belong to part type p
(j=1,...,Kp)

¢p  index for virtual cell used to process operation
j of part type p

mj, index for machine type used to process
operation j of part type p
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3.3 Input parameters

H number of time periods

C number of virtual cells

w number of workers

M number of machine types

P number of part types

Ky number of operations for part type p
Dpp demand for part p in period h

O operating cost per unit time per machine type m

tiom processing time required to perform operation j of part type p on machine type m
Vo unit cost to move part type p between machines

din distance between machine locations m,n

Sp subcontracting cost per part type

ip inventory holding cost per part type p per time period
Bo internal production cost per part type p

trm cost of training a worker for machine type m

Tm time-capacity of machine type m in each period

Tw time-capacity of worker w in each period

q; factor of workload balancing between virtual cells

q factor of workload balancing between workers

UB Maximal virtual cell size

awmn = 1if worker w has ability to operating on machine type m in each period
b,m =1if worker w has capability to training on machine type m

3.4 Decision variables IH,n = the quantity of inventory of part type p kept
in period h and carried over to period h+1

Xiomwen =1 if operation j of part type p is done on

machine type m by worker of w in virtual cell cin 3.5 Mathematical model

period h

Qumn = the quantity of parts of type p processed on By using the above notation, the nonlinear
machine type m in period h mathematical formulation for the VCMS is
SC,, = the quantity of parts of type p Presented as follows:

subcontracted in period h

K

mn Z=3"% > > > 2 %o Liom Quon Xipmien ™ 2 20 2 20 2 2 Bo-Qun X omuen

h=1 c=1 w=1 m=1 p=1 j=1 h=1 =1 w=1 m=1 p=1 j=1
H w P Kyl H P H &2 (1)
DIDIIDRH QX oy X DIDNMILIDIPIEY
Yo d(rn,p)(rml,p) meh lem,,,WC,ph XJ+1,Dm,+1,pWC.+1,ph Ip Ith Sp
h=1 w=1 p=1 j=1 h=1 p=1 h=1 p=1

+ Z z Z z Z _zp bwm' (1_awmh)' trm' ijmwch
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Subject to:

)
£

cC w P
22 20 2 tiom Qo X jpren < Ty YMLN (2)
c=1l w=l p=1 j=1

c M P Kp

22202 2 tiom Qo Xjpmuen < Ty YWD (3)
=1 m=l p=1 j=1

C W M ]

Z z z meh'xjpmwch+|Hp,h-l+SCph_|th:Dph Vj,p,h (4)
c=l w=l m=l1

w M P K q cw M P K

Z Z z tipm'meh'xipmwch 2 El zz Z Z z thm'meh'Xipmwm veh (5)
w=l m=l p=1 j=1 c=lw=l m=1 p=1 j=1

c M P Ky d, c w M P K

Z Z Z tipm'Qprnh'ijmwch 2 W Z z z Z Z tipm'meh'xipmwch vw;h (6)
c=1 m=l p=1 j=1 c=1l w=l m=1 p=1 j=1

M

D> Xipmen < UB  Vjpwch (7)
m=1

ath :thX jprrwc,h—l'(l_a/vm,h—l) +avvm,h—1 Vj,p,m,w,c,h 2 2 (8)
X jpmwch :a/vmh +th _ath . th Vj,p,m,w,c,h (9)
ijmwchE {0’1} Vj-pamyW,C,h (10)
Q. >0 andinteger. Vp,m,h (11)
SC,,>0 andinteger.  Vp,h (12)
IH, >0 andinteger. Vp,h (13)

The objective function given in Eq. (1) is to
minimize the total sum of the manufacturing cost,
material handling cost, subcontracting cost,
inventory holding cost, internal production cost
and needed cost of cross-training for workers
over the planning horizon. The first term
represents the manufacturing cost of all machines
in all virtual cells over the planning horizon. It is
the sum of the product of the time-workload
allocated to each machine type and their
associated cost. This term causes a balance
between the workload assigned to machines at
each virtual cell. The third term computes the
total distance traveled by the materials and
component parts for manufacturing all the
incoming demand in each period. So, the part
demand can be satisfied in each period through
internal production, subcontracting or inventory
carried over from the previous period, the second,
fourth and fifth terms computes this costs. Finally,

the sixth term calculates the total needed costs of
cross-training for workers.

Egs. (2),(3) show how machine and worker
capacity constraints are respected. Eq. (4) is the
relationship  between internal production,
inventory holding and subcontracting levels in
each period over the planning horizon. Egs. (5),(6)
enforce workload balance among virtual cells and
workers, respectively, where the factors of
0,,0, €[0,1), in each inequality, are used to
determine the extent of the workload balance. Eq.
(7) ensures the maximal virtual cell size is not
violated. Eq. (8) updates the skill matrix of
workers in the beginning of each period. Eq. (9)
ensures that the worker assigned to the machine
has the needed skill in each period. Finally,
constraint sets of (10)-(13) represent the logical
binary and non-negativity integer requirements on
the decision variables.
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3.6 Linearization of the proposed model

Eg. (1) is a non-linear integer equation. The
transformation of the non-linear terms of the
objective function into linear terms can be
performed by using the procedures given below.

Linearization of the first and second terms: the
first and second terms can be linearized by
introducing a non-negative variable Yjnwch. The
transformation equation is as follows:

Yjpmwch = meh . ijmwch

After, these three terms are linearized; the
objective function of the integer programming
model includes linear terms only. All constraints in
the model are also linear. The number of variables
and number of constraints in the linearized model
are presented in Table 1, based on the variable
indices.

(14)

Where below constraint must be added to the original model.

Yjpmwch <M. ijm wch v j; p,m,w,c, h

Where, M is a large positive value.

(15)

Linearization of the third term: the third term of the objective function can be linearized by introducing a
non- negative variable Wjpmpwen, @and a binary variable Zjpmpwern. The transformation equation is as

follows:

Wismnwekh = Zipmnwekh - Qomn, Where Zipmpweks = Xipmweh - Xj+1,pnwin, under the following sets of constraints:

ijmnwckh > ijmwch + Xj+1,pnwkh -1 Vj/p/ m,n,w,c, k/h (16)
VVjpmnwckh = M. ijmwch vj;p;m/n/ W;C/k;h (17)
Variable name Variable type Variable count Constraint Total count
Xipmwch Binary KPxMxWxCxH (2) MxH
Zipmnwckn Binary KPxM?xWxC?xH (3) WxH
Qpmh Integer PxMxH (4) KPxWxH
Y jomwch Integer KPxMxWxCxH (5) CxH
Wipmnwekh Integer KPxM?xWxC?xH (6) WxH
IHpn Integer PxH (7) KPxWxCxH
SChpn Integer PxH (8) KPxMxWxCx(H-1)
(9) KPxMxWxCxH
(15) KPxMxWxCxH
(16) KPxM2xWxC?xH
(17) KPxM*xWxC?xH

KP: Total number of operations in all of the parts.

Table 1 Number of variables and constraints in the linearized model
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4. Particle swarm optimization (PSO)
4.1 Brief review of particle swarm optimization

The particle swarm optimization (PSO) algorithm
was first proposed by Kennedy and Eberhart
(Kennedy and Eberhart, 1995) and had exhibited
many successful applications, ranging from
evolving weights and structure for artificial neural
networks (Eberhart and Shi, 1998), manufacture
end milling (Tandon, 2000), reactive power and
voltage control (Yoshida et al.,, 1999), to state
estimation for electric power distribution systems
(Shigenori, 2003). The convergence and
parameterization aspects of the PSO have also
been discussed thoroughly (Clerc and Kennedy,
2002).

The PSO is inspired by observations of birds
flocking and fish schooling. Birds/fish flock
synchronously, change direction suddenly, and
scatter and regroup together. Each individual,
called a particle, benefits from the historical
experience of its own and that of the other
members of the swarm during the search for food.
The PSO models the social dynamics of birds/fish
and serves as an optimizer for nonlinear functions.

4.2 Discrete particle swarm optimization

In the discussion above, the PSO is restricted in
real number space. However, many optimization
problems are set in a space featuring discrete or
qualitative distinctions between variables. To
meet the need, Kennedy and Eberhart (Kennedy
and Eberhart, 1997) developed a discrete version
of PSO. The discrete PSO essentially differs from
the original (or continuous) PSO in two
characteristics: First, the particle is composed of
the binary variable; second, the velocity must be
transformed into the change of probability, which
is the chance of the binary variable taking value
one.

Let X =(X{;, X, - - -, Xip), Xi;€ {0, 1} be particle

i with D bits at iteration t, where Xit being treated

as a potential solution has a rate of change called
velocity. Denote the velocity

asV,' =(vV;,Vy, ..., Vi), Viue R.
Let P'=(pj,, P, - - - » Piy) be the best solution that
particle i has obtained until iteration t, and
P= (Pys Pys - - -2 Pyp) be  the  best

obtained from P' in the population (gbest) or

solution

local neighborhood (lbest) at iteration t.

As in continuous PSO, each particle adjusts its
velocity according to the cognition part and the
social part. Mathematically, we have:

Vig= Vit;il+ (Pl Xig ) + €1, (p;d - Xig )» (18)
Where c, is the cognition learning factor, C,is the
social learning factor, and rand r,are random
numbers uniformly distributed in [0, 1]. Eq. (6)
specifies that the velocity of a particle at iteration
t is determined by the previous velocity of the
particle, the cognition part, and the social part.
Values c.I, , C,.I, determine the weights of the

two parts, where their sum is usually limited to 4
(Kennedy and Eberhart, 2001).

By Eq. (6), each particle moves according to its
new velocity. Recall that particles are represented
by binary variables. For the velocity value of each
bit in a particle, Kennedy and Eberhart (Kennedy
and Eberhart, 1997) claim that a higher value is
more likely to choose 1, while a lower value favors
the 0 choice. Furthermore, they constrain the
velocity value to the interval [0, 1] by using the
following sigmoid function:
1
t _
) T explvy)
Where s(v;;) denotes the probability of bit

(19)

X;, taking 1. To avoid S(v;;) approachingOor1,a
constant V, is used to limit the range of vj,. In
practice, V,,is often set at 4, e,
VeV oY e -
Kennedy et al. [19] gave the pseudo-code of
discrete PSO as follows (for maximization

problem):

max !
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Loop
Fori=1toNp

If G(X; )>G(P' ) then

For d = 1to D hits
Piy = Xig

Next d

End if

g=i

I/l G() evaluates objective function

IIp}, isbest so far

[larbitrary

For j=indices of neighbors (or population)

If G(P' )>G(P!) then g = |

Next j
Ford=1toD

/lgisindex of best performer in
neighborhood (or population)

t 1 t t t t
Vig =Vig + CL(Pig- Xig ) + C (Pga - Xig

ViId € [-Vmax '+Vmax]

(Vi) =

1+ eXp('Vitd),

If random number < s(v;, ) then x

Next d
Next i
Until criterion

5. Linear programming embedded particle swarm
optimization

In this section, we develop a linear programming
embedded particle swarm optimization algorithm
(LPEPSOQ) in order to solve the model presented in
Section 3 efficiently for large data set. For a given
solution point, the value of 0-1 binary decision
variables (Xjomwen) is obtained by decoding the
solution representation. To compute the
corresponding values of the integer variables and
the value of the objective function, a LP sub-
problem is solved using the simplex algorithm in
lingo 8.0 software. The main idea of embedding a
simplex algorithm in a meta-heuristic is similar to
that presented in Teghem et al. (1995). The
advantage of embedding an LP sub-problem in the
particle swarm optimization algorithm can be
explained as follows: For a given solution of 0-1
binary decision variables, there may be infinite
combinations of the values for the integer
variables.; however, by solving the LP sub-
problem, values that optimally correspond to the
integer solution can be obtained easily. It is also
important to note that the solution of the LP sub-
problem satisfies several constraints having
integer variables which otherwise may be difficult

nl=1 esex'=0

to satisfy by using particle swarm optimization
search alone. The steps of LPEPSO are
represented in the flow chart given in Fig. 3.

5.1 Encoding

The most important issue in applying PSO
successfully is to develop an effective 'problem
mapping' mechanism. The solution encoding of
the proposed model involves the 0-1 binary
decision variables Xjmwen €nabling a randomly
generated solution. Fig. 4 illustrates a particle
structure assuming P part type (P.-Pp) are to be
processed on M machines (M;-My,) by W workers
(W3-Wy) in C cells (C;-Cc) during H planning
period. A segment corresponding to a given time
period has three sub-segments: the first sub-
segment, labeled ‘“Machines”, represents the
operation assignment of the parts to various
machines, the second sub-segment, labeled
“Workers”, represents the operation assignment
of the parts to various workers and the three sub-
segment, labeled ““Cells”, represents the machine
configurations. In this figure, P, in the sub
segments of Machines, Workers and cells in
period 1 are shown in detail:
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Set initial parameters: Np,,C1,Co,w, Vinay,f, Vi=0,k=1,i=1

v

Randomly generate initial Np particles

»le

Obtain the decision variables Xjpmwch

v

Formulate and solve the corresponding LP

i=i+1
v :

Calculate the raw fitness and then calculate the transformed fitness

Is i=Np No

Yes
v

Identify the current local best particle

Is the current
local best solution better than the so far found?

Yes
N‘o
Calc'ulate the nelghbf)r Obtain the current global best particle 1« Update the'local
solution for each particle best particle
Y

Is the current
global best solution better than the so far found?

Yes
k=k+1 N\o i
:alicll Calculate the new velocity trail for each particle Upg:;f;};:ﬁgcl l(é bal
A
No Is k=kmax
Yes

Figure 3. The steps of LPEPSO
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Period 1 Period H
Machines Workers Cells Machines Workers Cells
MM ] .. [Mo W, [Ws] ... [Wal G 1G] . [ C. M [Ma] .. [Mo W, [Wa] ... [Wal G 1G] . |G
My Wy Ce
Parts Parts Parts
PP ]..[P P [P]..]P P [P]..]P
p P P
Operations Operations Operations
1[2].. ]k 1]2]..]k 1[2]..]k

Figure 4. Solution representation

5.2 Definition of discrete particle

We define particle Jj at iteration t as
t t t t t — t t

Xi = (X Xigreos Xi)yas X ip = (X 1o XihK oM
t t t t

Yini1 oY ink ppw 1 Zin1a1 -9 Zink , PC )

Xiviom +Y inipw +Zinjpe €104, h=1,..,H, where X,
equal 1 if operation j of part type p of particle j is
assigned to machine type m in period h and 0

otherwise, y equal 1 if operation j of part type

ithipw
p of particle i is assigned to worker w in period h

and 0 otherwise and Zithjpc equal 1 if operation j of
part type p of particle i is assigned to cell c in
period h and 0 otherwise. The value of decision

variable Xpmuen equals 1 if X, Vi, and Z.
equal 1 and 0 otherwise. For example, suppose
the sequence of X' is {(111,1,1,1), (111,2,2,2),
(112,2,2,2), (121,2,2,2), (122,1,1,1), (211,1,2,1),
(212,1,1,1), (221,2,2,2), (222,2,2,2)}, ((hpj,m,w,c)

denotes that operation j of part type p in period h
is assigned to mth machine, wth worker and cth
cell). By this definition, we have Xji1111=1,
X112221=1, X212221=1, X122221=1, X221111=1, X111212=1,
X211112=1, X121112=1, X222222=1. (see Fig. 5).

5.3 A linear programming sub-problem

The values of all the 0-1 binary decision variables
obtained by decoding a particle as explained in
the previous section. The corresponding values of
integer variables Qumn, SCpn, IHpn determined by
solving a linear programming sub-problem given
below. This LP sub-problem is to minimize the
total sum of the manufacturing cost, material
handling cost, subcontracting cost, inventory
holding cost and internal production cost, subject
to the constraints in Egs. (2)—(6). In this LP sub-
problem, these constraints are renumbered as
Egs. (21)—(25).

Period 1 Period 2
Parts Machines Workers Cells Machines Workers Cells
M] Mz W[ Wg C] Cz M] M2 WI Wz Cl CZ
m» P, | P2 P |P2|P |P2|P |P2|P |P2|P |P2|P |P2|P |P2|P |P2|P |P2|P |P2|P |P2
4>0\‘01 o.‘oz o.‘oz o,‘oz o\‘oz o.‘oz o.‘oz o,‘oz 01]0, o\‘oz o.‘oz o.‘oz o,‘oz o\‘oz o.‘ol o.‘o: 0.‘03 01‘03 01{02]01[02]0;|02{01|02[01] 02 0\‘01
tfofofufufrfrfoftfoJofrfr]rfrfo[tfofojtjrfrfrfo[t[t]t[ofofofo[t][o[t]t[o]r]ofo[t1[t]t]t]ofoJo]o0]I

Figure 5. Definition of particle X;'
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. H C WM P % H c w M P K
UUVPEDIDIPIPIPIPIAE OIS SRS IPIPIDIP IP I KoM
Fl =1 w=1 nFl p=1 j=1 Fl &1 w=1 nFl p=1 j=1
H w P Kl H P H P
LD IDID I I A S T HED PRI D DD 31 101 |y F D IV o (20)

hFl w=1 p=1 j=1 =l p=1 1l p=1
Subject to
c w P K
; WZ‘I pz; ,21: tiom- Qo X jpmen < T YM,D (21)
c M P K
Z Z Z Z tjpm'meh'ijchh - Tw VW,h (22)
=l m=l p=1 j=1
cC W M _
; ; ; meh'xjpmwch +|Hp,h-1+SCph_|th :Dph VJ,p,h (23)
w M P K q cw M P K
22020 2 o Qoo X jormaen 2 El 22220 2 b Qo X jpmen VD (24)
w=l m=1 p=1 j=1 c=lw=l m=1 p=1 j=1
c M P K q cC w M P K
222 20 2 Lo Qo X e = WZ 202 20 2 2 tiom Qoo X jpren YWD (25)
=l m=l p=1 j=1 =l w=l m=1 p=1 j=1

5.4. The fitness function

The purpose of the fitness function is to measure
the fitness of the candidate solutions in the
population with respect to the objective and
constraint functions of the model. For a given
solution, its fitness obtained by Eq. (26) as the
sum of the objective function of the model (Eq.
(1)) and the penalty terms of constraint violations.
The value of the model objective function is the
sum of the objective function of the LP sub-
problem, needed costs of cross-training for

F=Model Objective Function

1 X if Fo =Fn
Fo| tnaF Fa —F 501

Fmax - I:min I:max - Fmin

0.1 ; otherwise.

workers over the planning horizon. The penalty
terms are to enforce the cell size and worker skill
constraints. Factors f. and f,,s are used for scaling
these penalty terms. In this study, these factors
are determined by trial and error where
satisfactory values were obtained with little effort.
Finally, for a minimization problem, the raw
fitness score F needs to be transformed so that
the minimum raw fitness will correspond to the
maximum transformed fitness. This is achieved by
using Eq. (27) where F is the transformed fitness
function.

(26)

(27)
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5.5 Velocity trail

After a period selected, to move a particle to a
new sequence, we define the velocity of part of

particle i at iteration t as V= (X e

t t t t t
VXinkppm + VY inia1 VY bk pw ’Vzihlll""’vzihKPPC) ’

t t t t .
VXiiom » VY itiow » VZitipe € R, where VXiiom 1S the

velocity value for operation j of part type p of
particle i assigned to machine type m in period h

at iteration t, vyithij is the velocity value for
operation j of part type p of particle i assigned to
ithipc
the velocity value for operation j of part type p of
particle i is assigned to cell ¢ in period h at

iteration t. Velocity V., called velocity trail, is

worker w in period h at iteration t and vz is

inspired by the frequency-based memory
(Onwubolu, 2002). The frequency-based memory
records the number of times that an operation of
parts visits a particular machine, worker or cells,
and it is often used in combinatorial optimization,
e.g., the long-term memory of tabu-search, to
provide useful information that facilitates
choosing preferred moves. Here, we make use of
the similar concept to design the velocity trail. A
higher value of vxj, .
operation j of part type p is more likely to be
processed on machine type m, while a lower value
favors assigning operation j of part p out of the

mth machine; value of vy

in the trail indicates that

ijpw IN the trail indicates
that operation j of part type p is more likely to be
assigned to worker w, while a lower value favors
assigning operation j of part p out of the wth

worker and value of vz!. in the trail indicates

ihjpc
that operation j of part type p is more likely to be
assigned to cell ¢, while a lower value favors
assigning operation j of part p out of the cth cell.
The particle’s new velocity trail is updated by the
following equations:

t —_ t-1 t t t t
VXihjpm =W. VXihjpm+ Clrl(pihjpm' Xihjpm) + CZrZ(pghjpm - Xihjpm)
t — t-1 t t t t
Winipw =W- VWigjow + Clrl(pihjpw - Xihjpw) +Ch, (pghjpw - Xihjpw) (28)

t —_ t-1 t t t t
Vzihjpc =w. Vzihjpc + Clrl(pihjpc - Xihjpc) TGl (pghjpc - Xihjpc)

t— t t t
Here, R - (Rl’RZ’ e ’RH)’as P|:\= (pxilhlll”"'pxitthPM ’

pyithlll '""pyitthP\N J pzithlll ""1pzithKPPC ),

PX iom 1Y irjpw +PZiipe €10 A}, h=1,....H, denotes
the best solution that particle i has obtained until
iteration t, Pg‘hz(px;hm,...,pxtgthw ,

PY grus - PY grcopw + PZgrasn P2 g e )s

px;,hjpm ,DYSth ,[Z)Z;thpc E{O ,1}, h=1,...,H, denotes
the best solution obtained from particles in the
population at iteration t and w is the inertia
weight proposed by Shi and Eberhart (1998). A

constant V__use to limit the range

t t t .
OfVXiiom MWYinjpw AN VZipy ie.,

t t t
VXihjpm 'Vyihjpw ’Vzihjpc e[_\/max ’_Nmax] .

We now explain the meaning of velocity trail. For
simplicity, suppose there exist only the social part
in Egs. (28) and c,=r,=1. The sequence of X is
assumed to be {(111,1,1,1), 111,2,2,2), 112,2,2,2),
121,2,2,2), 122,1,1,1), 211,1,2,1), 212,1,1,1),
221,2,2,2), 222,2,2,2)}, the first period is selected
randomly and the sequence of Pglt be {(111,1,1,1),
112,2,1,2), 121,1,1,1), 122,1,2,2)}. It is clear that
VXtiljpm:P tgljpm'X tiljpmzll 0,-1,vy tiljpw:P tglij tiljpw:-z, 0,-
1 and VZ'i3jpc=P'410c-Xi1jpc=1,0,-1 (see Fig. 6). Values
1 intensify the assignments of operation j of part p
in the mth machine, wth worker and cth cell,
respectively, whereas, values -1 diversify such
assignments. In the calculation, we can simply add
Ptgljpm=1, Ptgljpw=1 and Ptglij-:l to the
corresponding VX'izjpm, VW'isjpw and VZ'is, subtract
X izjom=1, Xtiljpw=1 and Xtiljpczl from thiljpm/ Vytiljpw
and Vzt,-lj,,c, respectively, and leave others
unchanged. If each one of the th,-ljpm, Vytiljpw and
Vztilj,,c is smaller than -V, then set it with -V,,,; if
each one of the WxXizpm Wijpw and Vzig. is
greater than +V,,,,, then set it with +V,,4.

ﬂ Vol.7 No. 1 April 2009, Journal of Applied Research and Technology




Linear brogramming embedded particle swarm ontimization for solving an extended model of dvnamic virtual cellular manufacturing svstems. H. Rezazadeh et al. 83-108

Period 1
Parts Machines Workers Cells
Ml M2 Wl W2 Cl C2
m P [P2| P [P2|P [P2|P [P2|P [P2|P [P2
—————————— P01 0201|0201 |02]01|02] 0102010201 |02|01|02[01|02]{01|02]|01[02]01]02
O[O0 [1][0[-1]0[-1]0[O0O| 1| L ]|-1]|-1]-1|-1]1]OfO[T|-1[-1[O[-1|1

. . t _ t _ t _
Figure 6. The resulting values of VX ijpm= gljpm'Xtiljpm, Vyitjpw= gljpw'Xiljpw, VZitjpe= gljpc')(tiljpc

The above example and Eq. (28) demonstrate that
the velocity trail is gradually accumulated by the
individual’s own experience and individual’s
companions’ experience. This social behavior of
sharing useful information among individuals in
searching for the optimal solution is the merit of
PSO over more classical meta-heuristics.

As in discrete PSO, the velocity trail values need to
be converted from real numbers to the changes of
probabilities by the following sigmoid functions:

t L if t,,20
S(VXihjom ) = 1+ eXp('VXihjpm )
0 it t,,=0
(29)
1
SV irpw ) =
w1+ EXP(-VY irjpw )
1
vz.. )=
S( ipe ) 1+ exp(-VZ ithjpc )

Where, s(vxt,hjp,,,) represents the probability of
Xti,,jpm taking value 1, s(vyti,,j,,w) represents the
probability of Xy, taking value 1 and s(vz'sc)
represents the probability of Xt;hj,,c taking value 1.
For example s(vx'i1111)=0.2 in Fig. 7 represents that
there is a 20% chance that operation 1 of part
type 1 of particle i will be assigned to the first
machine at first period.

5.6 Construction of a particle sequence
(neighborhood solution)

In the proposed algorithm, each particle
constructs its new sequence based on its changes

of probabilities from the velocity trail. In the
conventional approach, particle i starts with a null
sequence in the selected period and assigns an
operation of part according to the following
probabilities:

S(vx ithj om)
ZS(VX ithj pm ) ’

jeu

oX;, (jp, m) =

(30)
S(Vyithjpw)
Zs(vyithjpw) ’

jeu

ay;, (ip, w) =

S(VZithjpc)
Zdvzithj pc)

jeU

az;,(ip, ¢) =

Where U is the set of all operations of parts. The
operations of parts are appended successively to
the partial sequence until a complete sequence is
constructed.

To reduce the computational effort, we replace U
by a smaller set of operations of parts in our
algorithm. The basic idea of this approach is to
take the information of the best sequence into
consideration and reduce the computational
effort. We employ parameters f that are
determined by experiments. Based on the
experiments in our VCMS, the use of the smaller
set not only reduces the computation time, but
also improves the solution quality. The new
probabilities are as follows:
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axi, (jp, M) Z%,
_ S(Vyithjpw)
Zs(vyithjpw) ,

jeF

Ay}, Gip, W) (31)

S(Vzithj pc )

ZS(VZithj o)

jeF

az;,(ip, ¢) =

Where F is the set among the f randomly selected
of operations of parts as present in the best
sequence (B) obtained so far. For example,
suppose first period is selected randomly, f=10,
B={(111,1,1,1),(112,2,2,2),(121,2,2,2),(122,1,1,1)}
and s(vx'izjpm), S(v¥'izjpw) and s(vz'yj,c) are as given in
Fig. 7. We start with the null sequence at first
period and select ten operations of parts
randomly. By Eq. (31), we calculate the
probabilities of selected operations of parts and
generate a random number for each one of them,
drawn from a uniform distribution in (0, 1). Then,
among selected operations of parts, each one has
probability greater than its random number, its bit
gets value 1 (see Fig. 7).

5.7. Variant of the gbest model

For the neighborhood structure of particles in the
social part, we introduce the gbest model but

modify the approach of searching for Pgtkin our
algorithm. In the original PSO approach, P;k is

obtained fromP, (i =1, 2,...,Np).
our computational experiments in the virtual
cellular manufacturing system problem, we find
that the approach which obtains Pgtk from the

Based on

current particles X, (i =1 2, ..., Np) performs

better. Although our approach spends more
computation time on converging, it increases the
probability of leaving a local optimum.

6. Numerical examples
6.1. Model analysis

In this section, we present a numerical example
showing some of the basic features of the
proposed model and illustrating the need of an
integrated approach in manufacturing system
analysis. The considered example consists of
seven part types, six machine types and two
periods in which each part type is assumed to
have two operation that must be processed
respectively; each operation being able to be
performed on two alternative machines. Thus,
each part type has 2x2=4 process plans and there
are 4’ combinations to select a process plan for
each part type in each period. For the numerical
example, we assume that the upper bound for the
virtual cell sizes is 6, workload balancing factors

Period 1

Parts Machines

Workers Cells

Operations M,

P,

o | 02 Ui 01

Best particle (B S 0 [0 | 0 [0 0|02 0] 0
5(\/1“) 1 0 0 1 0 1 1 0

1 0 1 0 0 1 0 1 0 0 1 0 1 1 0

0.28 0.54]0.68 | 0.99 | 0.34 | 0.50 | 0.01 0.75]0.15 0.35

S T—{ox] 0 099 0 [o4s| o
Selected operations >

*k ok

q(v'in) P 0

0.18 0.13 0.07 | 0.10 0.15

0.08 0.10 0.24]0.12 0.13

Random numbers —

*k

Candidated bits Vo oo
New sequence

Figure 7. The construction of a particle
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g1, 0, are 0.9 and unit material traveling cost is
one dollar (i.e. y=1 S). After linearization, the
proposed model consists of 37520 variables and
8316 constraints under the considered example.
Tables 2-4 show related data to the considered
example. Table 2 shows distances between the
machines. Table 3 provides information about the
workforce such as initial skills, ability and inability
of workers for training on individual machines.
Also table 3 presents cost of cross-training on
each machine and time-capacity of each worker in
each period. Table 4 presents the production data
(time-capacity and operating cost of each machine
type, quantity of demand for each part type in
each period, processing time, inventory holding
cost, subcontracting cost and internal production
cost). With the data given in Tables 2-4, the
proposed model was solved using the general
branch and cut algorithm in LINGO where the
solution generated by the proposed particle
swarm optimization algorithm was used as a
starting incumbent solution. Decisions regarding
virtual cell configuration, internal production,
subcontracting and inventory level are given in
Tables 5 and 6. These tables show some of the
characteristics and advantages of the proposed
model. The demand for part types 1 is entirely
satisfied by subcontracting and the demand for
some of the part types, such as part types 3, 6
during period 1 and part types 5, 6 during period
2, is satisfied partially by internal production and
partially by subcontracting. Part 3 is entirely
processed in virtual cell 1. This is indicated in
Table 5

In Table 7 is the convergence history of LINGO and
LPEPSO in solving this problem. As can be seen
from Table 7, the lower bound (F***™) and the
best objective function value (F**) for the
problem were 87925 and 92114, respectively,
found by LINGO after 46 hours of computation. At
this point of the computation, the optimality gap
was (92114-87925)/92114x100=4.55%. From this
table, it can also be seen that starting from the
first 26 seconds of computation time, LPEPSO
found solutions better than those generated using
LINGO in 48 hours. The optimality gap of the final
solution found using LPEPSO with reference to the
LINGO lower bound was 0.58%. An improved
lower bound for the problem was also determined
by solving it to optimality after relaxing the
constraints in Eqg. (7) and setting the number of
virtual cells to 1. The improved lower bound was
87986 and the optimality gap of the final solution
found using LPEPSO with reference to this
improved lower bound was 0.52 %. This suggested
that the optimality gap of the LPEPSO solution
with reference to an optimal solution of the
original problem is less than 0.52%.

From\To M1 M2 M3 M4 M5 M6

M1 o 8 3 17 18 13
M2 8 0 9 9 10 5
M3 3 9 0 14 20 10
M4 17 9 14 0 6 5
M5 8 10 20 6 0 M

M6 13 5§ 10 5 11 O

Table 2 Traveling distances (meters) among the
machine locations

Worker Machine Tw (hours)
M1 M2 M3 M4 M5 M6

W1 S UA UA UA S A 600

W2 A A S A UA S 600

W3 UA S UA A UA S 600

W4 A UA A UA S UA 600

W5 UA A A S A UA 600

trm ($) 1000 1200 1000 1400 1800 2000

S- means that the worker had the skill required for operating an
individual machine

A- means that the worker is able to train on an individual machine

Table 3 Workforce information
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Part O Periodic

Machine Costs related to
p demand
M1 M2 M3 M4 M5 M6 h=1 h=2 Sp ip Bo VYp
P1 1 0.55 0.44 400 250 20 0.45 10 10
2 0.35 0.48
P2 1 0.45 0.48 0 600 35 045 9 10
2 0.79 0.62
P3 1 0.20 500 650 50 040 9 10
2 0.44 0.51
P4 1 0.68 350 400 30 045 10 10
2 0.23 0.33
P5 1 0.62 0.64 250 350 30 025 9 10
2 0.81 0.73
P6 1 0.34 750 500 45 025 7 10
2 0.25
P7 1 0.58 0.44 300 300 25 050 9 10
2 0.12 0.21
T, 600 600 600 600 600 600
(hours)
a,, 6 9 7 5 4 7
Table 4 Production data for the numerical example
Part Oper. Machine Internal Inventory Subcontracting
production  holding
M1 M5 M6 M2 M3 M4
P1 0 0 400
P3 1 200/w1 200 0 300
2 200/w4
P5 1 144/w4  106/w3 250 0 0
2 250/w1
P6 1 300/w4 475 2 277
175/w1l
2 475/w3
P4 1 350/w2 350 0 0
2 350/w
5
P7 1 300/w 300 0 0
5
2 300/w
5

Table 5 The production planning of parts for period 1
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Part Oper. Machine Internal Inventory  Subcontracting
production  holding
M1 M5 M6 M2 M3 M4

P1 0 0 250

P2 1 600/w4 600 0 0
2 125/w3 475/w5

P3 1 650/w1 650 0 0
2 274/w4 376/w3

P5 1 150/w3 150 0 200
2 150/w1l

P6 1 198/w1l 198 0 300
2 198/wl

P4 1 400/w2 400 0 0
2 400/w5

P7 1 300/w2 300 0 0
2 300/w3

Table 6 The production planning of parts for period 2

Time FRound FoEST LPEPSO
00:00:02 87654 112649 92819
00:00:05 87654 112872 92473
00:00:11 87654 112431 92345
00:00:26 87635 111187 91437
00:01:58 87647 105904 90128
00:05:08 87647 101812 89483
00:15:28 87647 99187 88442
00:31:48 87652 96419 88442
01:03:24 87669 95871 *
05:07:37 87674 95782 *
10:03:45 87719 94918 *
14:21:56 87816 94639 *
19:57:42 87855 94204 *
25:16:28 87857 93119 *
31:34:07 87869 92649 *
39:18:06 87882 92372 *
44:36:05 87894 92114 *
48:41:06 87925 92114 *

* A termination criterion was met.

Table 7 Comparison of LPEPSO with LINGO for the example problem

6.2 Computation performance

In addition to the example problem discussed
above, several other example problems were
developed to evaluate the computational
efficiency of the developed particle swarm
optimization algorithm. These problems
generated randomly based on consideration of
similar data in the literature. Also, problems are

solved under conditions discussed in Section 3.7.
For simplicity, we assume that the capacity of the
machines are independent of their type, but
depends on the length of the planning horizon.
For this purpose, we assume that the planning
horizon is a three months period or one season.
Also, each period includes 75 workdays and each
workday includes 8 hours. Therefore, each period
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is equal to 75x8 = 600 hours. Consequently, by
taking into account the controllable and
uncontrollable reasons for interrupting production
activities, we consider a 500-hour effective
capacity for all machine types. Each problem is
allowed 7200 seconds (2 hours). However,
because of the computational complexity, the
proposed model cannot be optimally solved
within 7200 seconds or even more time for
medium and large-sized instances. Thus, to solve
the small and medium-sized problems, we
consider a possible interval for the optimum value
of objective function (F') that are constructed by
the F*" and F*** values that are introduced by
Lingo software where F?™ < F" < pP
According to the Lingo software’s documents, The
F**' indicates the best feasible objective function
value (OFV) found so far.

Found indicates the bound on the objective
function values. This bound is a limit on how far
the solver will be able to improve the objective. At
some point, these two values may become very
close. Given that the best objective value can
never exceed the bound, the fact that these two
values are close indicates that Lingo’s current best
solution is either the optimal solution or very
close to it. At such a point, the user may choose to
interrupt the solver and go with the current best
solution in the interest of saving on additional
computation time. As mentioned earlier, we
interrupt the solver within 7200 seconds.

6.2.1. LPEPSO results

In this section, the performance of LPEPSO
developed in Section 5 will be verified. In the
preliminary experiments, the following ranges of
parameter values from the PSO literature were
tested N,=[5,60], c,=[1,4], w=(0.8,1.2), Vmax=[3,20],
f=[0.2xk,xPx(M+W+C), 0.8xkpxPx(M+W+C)].
Based on experimental results, the best PSO
parameter settings are shown in Table 8. By
attention to whether the mean and best OFV

found by LPEPSO lie in interval [F**" F**] or not,
six measures for judgment on the effectiveness of
LPEPSO are defined as

1. G™" = Gap between F**' and Z™"". We assume
that if Z™" < F** then the associated gap will
be a negative number.

2. G™' = Gap between F*** and 2. We assume
that if Z°*' < F*** then the associated gap will
be a negative number.

3. Avg (|G"-G™"|) = average of the absolute
difference between G™"and G™*.

4, N™" = the number of problems of their
corresponding Z™*" lies in interval [F*"" F°).

5. N°*' = the number of problems of their
corresponding Z°* lies in interval [F*°™ F*e.

6. CPU time.

Parameter N, w (; C Viax F
0.4x

Value 30 1 15 15 10 k xPx(M+W+C)

Table 8 PSO parameter settings

In measures 1-4, F**! is a base to evaluate the
performance. Thus, a negative value implicates a
better performance. Table 9 indicates the
comparison between the results obtained from
B&B and the LPEPSO algorithm corresponding to
the 20 problems. The two last columns of Table 9
show the values of G™* and G™ resulted from
LPEPSO, respectively. In general, the smaller
values of G™ G**' and Avg (|G**-G™™"|) are
more favorable and implicate solutions with a
higher quality. Obviously, measure Avg (|G"“-
G™"|) is directly dependent to the standard
deviation of OFV, in 20 times run. As shown in the
last row of Table 9, the average values of G™”,
G**' and Avg (| G**-G™"|) resulted from LPEPSO
are obtained as 0.77%, -1.19% and 4.15%,
respectively. In other words, Z™" is worse
average 0.77% than F™' while Z°*' is better
average 1.19% than F**" and also there is average
4.15% difference between 2™ and Z°*.
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Moreover, we have N™ = 6 and N°*' = 11, thus,  obtained as 0.45 that is negligible. Fig. 8a and b
in 30% of problems, Z™ lies in interval shows the behavior of Z™ and Z°*' values
[FP°und F*et) and in 55% of problems, 2! lies in  obtained by LPEPSO versus F**' according to the
interval [F“"™ F**']. The average of CPU time is  information provided in Table 9. In these figures,
obtained as 686.75 seconds that is a promising  the problems are arranged by terms of F**' values.
result in comparison to the CPU time reported for = The obtained results show that the LPEPSO is a
B&B. The average degree of infeasibility is relatively suitable approach to solve the large-size

problems.
No. Problem info. B&B L PEPSO Gap
" PxMxWxCxH UB P fppound Tees Vis Zmen Tirerso (%) G (%) |G-G™| (%)

1 4x2x2x2x2 3 25,625 25,625 1 25,625 25,625 4 0.00 0.00 0.00

2 B5x6x3x2x2 3 61,686 61,686 158 61,686 61,686 7 0.00 0.00 0.00

3 6x6x3x2x2 4 64,591 64,591 4286 64,591 65,257 12 0.00 1.03 1.03

4 8x6x4x2x2 4 98,455 98,455 4562 100,435 98512 45 2.01 0.06 1.95

5  12x10x5x2x2 5 101,145 86,379 >7200 99,176 102,402 164 -1.95 1.24 3.19

6 16x10x6x2x3 5 109,458 106,967 >7200 110,549 112,487 75 1.00 277 1.77

7  20x14x8x2x2 5 92,648 92,349 >7200 92,954 94,264 128 0.33 1.74 141

8 22x15x8x3x2 6 143,719 141,365 >7200 156,546 152,658 144 8.93 6.22 271

9  24x14x7x3%x2 6 129,515 127,658 >7200 130,256 125,154 354 0.57 -3.37 3.94
10 28x16x10x3x2 7 134,215 131,544 >7200 134,256 139,125 236 0.03 3.66 3.63
11 28x16x8x4x2 6 139,568 138,697 >7200 139,201 145,654 486 -0.26 4.36 4.62
12 28x18x9x3x2 8 186,657 175,249 >7200 175,625 190,365 684 -5.91 1.99 7.90
13 30x17x10x4x2 10 283,545 243,568 >7200 253,214 292,348 985 -10.70 3.10 13.80
14 30x17x10x3x2 7 297,147 257,549 >7200 301,524 299,345 1085 1.47 0.74 0.73
15  30%x20x8x3x2 8 282,258 241,246 >7200 257,245 282,346 1262 -8.86 0.03 8.89
16  30x20x12x3x2 10 301,568 265,456 >7200 303,367 303,687 1150 0.60 0.70 0.11
17  40%x22x14x5x2 11 368,467 295,426 >7200 398,596 352,124 1428 8.18 -4.44 12.61
18  40x22x10x3x2 8 395,435 303,102 >7200 381,249 416,597 1453 -3.59 5.35 8.94
19 50x27x15%x2x2 12 464,598 400,125 >7200 429,267 442,168 1982 -7.60 -4.83 2.78
20 60%32x20x5x2 15 606,257 501,625 >7200 557,895 575,825 2051 -7.98 -5.02 2.96
Average 686.75 -1.19 0.77 4.15

Table 9 Comparison between B&B and LPEPSO runs
a [ wZ)EAN F_BEST]

5_ 9'.3'.'.'.2._.—

i 3

ta

23 123 43 67 8 910111213 141516 1718 1920

Problem No. Problem No.

Figure 8. Comparison between the B&B and LPEPSO results (Table 9): (a) 2™ found by LPEPSO vs. F**" and (b) Z°**' found
by LPEPSO vs. F*",

Vol.7 No. 1 April 2009, Journal of Applied Research and Technology F [k




Linear programming embedded particle swarm optimization for solving an extended model of dynamic virtual cellular manufacturing systems, H. Rezazadeh et al, 83-108

7. Conclusion

In this paper a comprehensive mathematical
model of a dynamic virtual cellular manufacturing
system (DVCMS) is introduced. The advantages of
the proposed model are as follows: simultaneous
considering dynamic  system configuration,
operation sequence, alternative process plans for
part types, machine and worker capacity,
workload balancing, cell size limit and lot splitting.
The objective is to minimize the total sum of the
manufacturing cost, material handling cost,
subcontracting cost, inventory holding cost,
internal production cost and needed cost of cross-
training for workers over the planning horizon.
The proposed model is NP-hard and may not be
solved to optimality or near optimality using of-
the-shelf optimization packages. To this end, we
developed a heuristic method based on the
Particle swarm optimization algorithm so-called
LPEPSO to solve the proposed model. During the
course of the search, the Particle swarm
optimization algorithm uses the simplex algorithm
interactively to solve a linear programming sub-
problem corresponding to each integer solution
visited in the search process. The obtained results
show that LPEPSO can provide a good solution in a
negligible time where the average gap between
the quality of the solution found by LPEPSO and
the best solution found by the branch and bound
(B&B) method is nearly 0.77%. The formulated
mathematical is still open for future research with
considering other issues such as incorporating
virtual cellular manufacturing into supply chain
design, considering individual learning and
forgetting characteristics in workforce grouping
for improving system productivity and considering
product quality in the design of VCMS.
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