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ABSTRACT

A system for improving the intelligibility and quality of alaryngeal speech based on the replacement of voiced segments of
alaryngeal speech with the equivalent segments of normal speech is proposed. To this end, the system proposed identifies the
voiced segments of the alaryngeal speech signal by using isolate speech recognition methods, and replaces them by their
equivalent voiced segments of normal speech, keeping the silence and unvoiced segments without change. Evaluation results
using objective and subjective evaluation methods show that the proposed system proposed provides a fairly good
improvement of the quality and intelligibility of alaryngeal speech signals.

Keywords: Speech enhancement, esophageal speech, electronic larynx, multilayer perceptron, voiced and unvoiced segments
detection, speech synthesis.

RESUMEN

Este articulo propone un sistema para mejorar la calidad e inteligibilidad de la voz de personas laringetomizadas, el cual se basa
en el reemplazo de segmentos vocalizados de voz laringetomizada por segmentos equivalentes de voz normal. Con esta
finalidad el sistema identifica los segmentos vocalizados de voz laringetomizada usando técnicas de reconocimiento de
comandos aislados de voz, y las reemplaza por los segmentos equivalentes de voz normal, conservando sin cambio los
segmentos y los no-vocalizados. Resultados obtenidos usando métodos de evaluacion tanto subjetivos como objetivos
muestran que el sistema propuesto proporciona una mejoria importante tanto en la calidad como en la inteligibilidad de sefiales
de voz laringetomizada.

1. Introduction ALT, which has the form of a handheld device,
introduces an excitation in the vocal track by
applying a vibration against the external walls of
the neck. This excitation is then modulated by the
movement of the oral cavity to produce the

speech sound [1]. This transducer is attached to

Persons that suffer diseases such as throat cancer
require their larynx and vocal cords to be extracted
by a surgical operation, requiring then
rehabilitation in order to be able to reintegrate to

their individual, social, familiar and work activities.
To accomplish this, different methods have been
used, such as the esophageal speech, the use of
tracheoesophageal prosthetics and the Artificial
Larynx Transducer (ALT), also known as “electronic
larynx”.  Among them, the Artificial Larynx
Transducer (ALT), which has been used by
alaryngeal patients for over the last 40 years
without essential changes, is the most widely used
rehabilitation method [1], [2].

the speaker’s neck, and in some cases to the
speaker’s cheeks. ALT is widely recommended by
voice rehabilitation physicians because it is very
easy to use even for new patients, although the
voice produced by these transducers is unnatural
and with low quality, besides, it is distorted by the
ALT produced background noise. This results in a
considerably degradation of the quality and
intelligibility of speech, problem for which an
optimal solution has not yet been found [2]-[4].
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The esophageal speech, on the other hand, is
produced through the compression of the
contained air in the vocal track, from the stomach
to the mouth through the esophagus. This air is
swallowed and, as passing through the
esophageal-larynx segment, produces a vibration
of the esophageal upper muscle, bringing about
the speech. The sound generated is similar to a
burp, the tone is commonly very low, and the
timbre is generally harsh. As in the ALT produced
speech, the voiced segments of esophageal speech
are the most affected part of the speech within a
word or phrase [2], [5], giving as a result an
unnatural speech. Thus, many efforts have been
carried out to improve its quality and intelligibility.

Several approaches have been proposed to
improve the quality and intelligibility of alaryngeal
speech, esophageal as well as ALT produced
speech. To reduce the ALT produced background
noise, several adaptive filter based speech
enhancement algorithms have been proposed [3],
[4]. These algorithms reduce the ALT produced
background noise, improving the intelligibility,
although not the quality, of the ALT produce
speech. An analysis-synthesis-based method to
improve the alaryngeal speech quality was
proposed in [6]. In this method, which uses a
vocoder-like approach, the speech is firstly
digitalized using a sampling frequency equal to 10
kHz. Next the sampled signal is divided in 2
frequency bands: the lowpass band from 0 to 2.5
kHz and the highpass band from 2.5 kHz to 5 kHz.
The analysis highpass filter output is fed into a
synthesis highpass filter whose output used to
synthesize the highpass band of restored speech.
On the other hand, the analysis lowpass filter
output is further processed to synthesize the
lowpass band of restored speech. To this end,
firstly the signal power is estimated and, if it is
smaller than a given threshold, the speech
segment is considered as unvoiced and fed to a
reconstruction lowpass filter; otherwise, the linear
predictive coefficients, LPC, of speech segment are

estimated and a restored voice segment is
synthesized using normal voice pitch information.
Finally, the synthesized voiced signal is fed into a
reconstruction lowpass filter whose output signal
is combined with the highpass filter output to
obtain the restored speech signal. This system
provides a restored speech with improved quality,
similar to that provided by a vocoder speech
coder. Other esophageal speech enhancement
approach proposed in [7] uses a frequency band
extension form 4 kHz to 8 kHz. Here, the highpass
band, from 4 to 8 kHz, is estimated from the
lowpass band from 0 Hz to 4 kHz. This fact allows
having frequency components from 0 to 8 kHz
improving in such a way the speech tone. In this
system, the generation of the highpass band is
based on analysis-synthesis methods using the LPC
coefficients of esophageal speech lowpass band.
This approach provides an improved signal by
adding high frequency components, although the
low frequency band remains unchanged. Finally, a
very promising approach is based on speech
conversion techniques [8-10], which carry out a
spectral conversion using vector quantization
methods. These approaches perform fairly well
although still present some problems because the
spectral conversion reduce a continuous spectral
space into a discrete code book, which may
produce a distortion that still must be reduced.

This paper proposes an alaryngeal speech
enhancement system based on pattern recognition
methods. In the system proposed, firstly the
alayryngeal voice signal is filtered to reduce the
background noise. Next, the voiced/unvoiced
detection is performed and the voiced segments
identified using artificial neural networks (ANN).
Next, the voiced segments are replaced by their
equivalent normal speech voiced segments, while
the unvoiced segments are kept without change.
Finally, the estimated voiced, unvoiced and silence
segments are used together to produce the
restored speech. Evaluation results show that the
system proposed provides quite a good
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improvement in the quality and intelligibility of
esophageal as well as ALT produced alaryngeal
speech.

2. System proposed

The alaryngeal speech restoration system
proposed, shown in Fig. 1, is based on the
replacement of voiced segments of alaryngeal
speech by their equivalent normal speech voiced
segments, while keeping the unvoiced and silence
segments without change. The main reason for it
is the fact that the voiced segments have more
impact on the speech quality and intelligibility than
the unvoiced ones.

To achieve this goal, firstly the alaryngeal speech
signal is filtered with a low pass filter with cutoff
frequency of 900 Hz to reduce the background
noise. Then the silence segments are estimated

Power
estimation

Preprocessing
stage

using the time average speech signal power as
proposed in [11]. Here, if a silence segment is
detected, the switch is enabled and the segment is
concatenated with the previous one to produce
the output signal. If voice activity is detected, the
speech segment is analyzed using the pitch
analysis, the zero crossings number and the
formant analysis.

Next, if the segment is considered as unvoiced, the
switch is enabled and the speech segment
concatenated at the output with the previous
segments; otherwise, the switch is disabled and
the speech segment is identified using pattern
recognition techniques. Then the alaryngeal
voiced segment is replaced by the equivalent
normal speech voiced segment, contained in the
codebook, which is finally concatenated with the
previous segments to synthesize the restored
speech signal.

Alaryngeal
Speech

Codebook
Normal
J speech
No - Pitch Zero Format
estimation crossing estimation
| | Voiced
- Segment
Voiced/f
unvoiced
detection
Enable,{] No $oiees yes Co.debook p -
disable oice index oncatenation
estimation
Unvoiced Restored
or silence Speech
segment
Figure 1. Alaryngeal speech enhancement systems proposed
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2.1 Detection of voiced segments of alaryngeal
speech.

A voiced (sonorous) segment is characterized by a
periodic or quasiperiodic behavior in time, a fine
harmonic frequency structure produced by the
vibration of the vocal chords, as well as a high
energy concentration due to the little obstruction
that the air meets in its way through the vocal
tract. The vowels and some consonants present
this behavior.

Several approaches have been proposed to detect
the voiced segments of speech signals. However,
the use of a single criterion of decision to
determine if a speech segment is voiced or
unvoiced is not enough. Thus, most algorithms in
the speech processing area use the combination of
more than one criterion. The proposed speech
restoration method uses the combination of pitch
estimation, zero crossing and formant analysis of
speech signal for voiced/unvoiced segment
classification.

2.1.1 Pitch detection method

The first criterion used for voiced activity detection
is the pitch information. To this end, the
autocorrelation method [11], [12] is used, in which
the speech segment is divided in blocks of 30 ms,
with 50% of overlap. Next, a center clipper is
applied. Subsequently, the autocorrelation of the
resulting signal is estimated. Finally, the pitch is
estimated as the time distance between the
autocorrelation peak located in the origin r,(0)
and subsequent peak that is larger than 0.7r,,(0).
Thus, if the second peak exists, the segment is
considered as voiced; otherwise, it is unvoiced.

2.1.2 Zero Crossing
The second criterion is based on the signal

periodicity using the number of zero crossing in
each frame. Here, two thresholds are used which

establish that in a noise-free speech segment of 10
ms, a voiced segment crosses by zero about 12
times, while in an unvoiced segment, it crosses
approximately 50 times [12, 13]. These values are
not fixed and must be adjusted according to the
sampling frequency used. In the proposed
algorithm, for a sampling frequency of 8 kHz, the
maximum value of zero crossings that could be
detected in 10 ms is approximately 40. Thus, an
upper threshold of 30 was chosen for
voiced/unvoiced classification.

2.1.3. Formant Analysis

The third criterion is based on the amplitude of
formants which, representing the resonance
frequency of the vocal tract, are the envelope
peaks of the speech signal power spectrum
density. The frequencies in which the first
formants are produced are of great importance in
speech recognition.

The formants are obtained from the polynomial
roots generated by the linear prediction
coefficients (LPC) that represent the vocal tract
filter. Once the formants, whose frequency is
defined by the angle of the roots closer to the
unitary circle, are obtained, they are ordered in an
ascending form and the first three formants are
chosen as parameters of the speech segment.
These formants are then stored in the system so
that they can be employed to take the
voiced/invoiced decision. Using the normalized
Fast Fourier Transform (FFT) of speech frame, the
amplitude of the formant frequency can be
obtained.

In order to decide whether the segment is voiced
or not, the value of the formants amplitude is
normalized each 100 millisecond segment. Then
the algorithm finds the maximum value of each
formant among the 10 values stored for each
fragment. Then, each value is divided between the
estimated maximum values as shown in (1).
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The local normalization process is justified for
esophageal speakers due to the lost of energy as
they speak. Once the normalized values are
obtained, the decision is made using an
experimental threshold value which is equal to
0.25. It can be seen as a logic mask in the
algorithm if the normalized values are greater than
0.25, it is set to one, otherwise it is set to zero, as
shown in (2).

AFx—N
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AFX—-N APX v

0.25

AFX o AFx—N
. 22T
AFx

max

0.25 (2)

Next an ‘and’ logic operation is realized with the
three formant array using the values obtained
after the threshold operation. Here, only the
segments in which the three formants have values
over the 0.25 are considered to be voiced
segments.

Finally, using the three criteria mentioned above, a
window is applied to the original signal which is
equal to one if the segment is classified as voiced
by the three methods; and it is equal to zero
otherwise, such that only the voiced segments of
the original signal are obtained.

2.2 Feature vector extraction

The performance of any speech recognition
algorithm strongly depends on the accuracy of the
feature extraction method. This fact has
motivated the development of several efficient
algorithms to estimate a set of parameters that
allows a robust characterization of the speech
signal such as the MEL scale [12-15], the Linear
Predictive Coding (LPC) which models the vocal
track [12-15], the cepstral coefficients [12,13], etc.
Most widely used feature extraction methods,
such as those described above, are based on
modeling the form in which the speech signal is
produced. However, if the speech signals are
processed taking in account the form in which they
are perceived by the human ear, similar or even
better results may be obtained. Thus, the use of
an ear model-based feature extraction method
may be an attractive alternative because this
approach allows characterizing the speech signal in
the form that it is perceived [16]. Thus, a feature
extraction method, based on an inner ear model
taking into account the fundamentals concepts of
critical bands, will be developed.

In the inner ear, the basilar membrane carries out
a time-frequency decomposition of the audible
signal through a multiresolution analysis similar to
that performed by a wavelet transform [17]. Thus,
to develop a feature extraction method that
emulates the basilar membrane operation, it must
be able to carry out a similar frequency
decomposition, as proposed in the inner ear model
developed by Zhang et. al. [17]. In this model, the
dynamics of the basilar membrane, which has a
characteristic frequency equal to fc, can be
modeled by using a gamma-tone filter which
consists of a gamma distribution multiplied by a
pure tone of frequency fc. Here, the shape of the

gamma distribution, ¢, is related to the filter order
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while the scale @ is related to the period of
occurrence of the events under analysis when they
have a Poisson distribution. Thus, the gamma-
tone filter representing the impulse response of
the basilar membrane is given by [17]

-t
L t“'e? cos(2zt/6) t>0

Ve (t): (0{ — 1)! 0“ (3)

Equation (3) defines a family of gamma-tone filters
characterized by @ and o.. Thus, to emulate the
basilar membrane behavior, it is necessary to look
for the more suitable filter bank which, according
to the basilar membrane model given by Zhang et.
al. [17], can be obtained if we set =1 and a=3;
because with these values (3) provide the best

approximation to the inner ear dynamics. Thus,
from (3), it follows that [18]
Lp(t)— Lizet cos(2nt) t>0

(4)
Taking the Fourier transform of (4), it can be

shown that i/ (t) presents the expected attributes
of a mother wavelet because it satisfies the
admissibility condition given by [19]

jL"dw@o

(5)
This means that  (t) can be used to analyze and

then reconstruct a signal without loss of
information [19]. That is the functions given by (6)

constitute an unconditional basis in L?(R) [19]; and
then we can estimate the expansion coefficients of
an audio signal f(t) by using the scalar product
between f{(t) and the function ((t) with translation
T and scaling factor s as follows [19]:

o

A sampled version of (6) must be specified because
we require characterizing discrete time speech
signals. To this end, a sampling of the scale
parameter, s, involving the psychoacoustical
phenomenon known as critical bandwidths will be
used [20].

C(r,s)= \/—ff(t) ( o

The critical bands theory models the basilar
membrane operation as a filter bank in which the
bandwidth of each filter increases as its central
frequency also increases [6, 7]. This requirement
can be satisfied using the Bark frequency scale that
is a logarithmic scale in which the frequency
resolution of any section of the basilar membrane
is exactly equal to one Bark, regardless of its
characteristic frequency. Because the Bark scale is
characterized by a biological parameter, there is
not an exact expression for it given as a result
several different proposals available in the
literature. Among them, the statistical fitting
provided by Schroeder et al. [20] appears to be a
suitable choice. Thus, using the approach provided
in [8], the relation between the linear frequency, f,
given in Hz and the Bark frequency Z, is given by
[20]:

2
z=71n L+ (f) +1
650 | 650

(7)
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Figure 2. (a) Gamma-tone Function derived from an inner ear model. (b) Frequency
response of filterbank derived from an inner ear model.

Next, using (7) the j-th scaling factor sj given by the
inverse of the j-th central frequency in Hz, f,
corresponding to the j-th band in the Bark
frequency scale becomes [19]

ell”
s, = , =123,....
) 325”7 - 1) (8)

The inclusion of the bark frequency in the scaling
factor estimation, as well as the relation between
(7) and the dynamics of the basilar membrane,
allows frequency decomposition similar to that
carried out by the human ear. Because the scaling
factor given by (8) satisfies the Littlewood Paley
theorem since

#1077 (52517
(e —1)_

2(j+1)/7 -1

Siy e
lim —=lim -
j>+o0 S j>+o0 e//

there is not information loss during the sampling
process. Finally, the number of subbands is
related with the sampling frequency as follows:

2
]
1300

Thus, for a sampling frequency equal to 8 KHz, the
number of subbands becomes 17. Finally, the
translation axis is naturally sampled because the
input data is a discrete time signal and then the j-
th decomposition signal can be estimated as
follows [19]:

j _ =int] 7In| =
max 1300

(10)

where T denotes the sampling period. Here, the
expansion coefficients Cj obtained for each
subband are used to estimate the feature vector to
be used during the training and recognition tasks.
Figure 2 shows 10(n) and the magnitude of the
filter bank frequency response, respectively.
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¢,(m)=23| flm) =M

(h—m)T
2 n=0 S;

J

Using (11), the feature vector used for voiced
segment identification consists of the following
parameters [10]: the energy of the m-th, speech

signal frame, x2(n), where 1<n<N and N is

number of samples in the m-th frame, the energy
contained in each one of the 17 wavelet

decomposition levels of m-th speech frame Cjz(m)

, Where 1< j<17; the difference between the
energy of the previous and actual frames given by
d, (m)=x*(n—mN)—x*(n—(m—1)N) (12)

together with the difference between the energy

contained in each one of the 17 wavelet
decomposition levels of current and previous
frames,

v, =c’(m)-c(m-1) (13)

where m is the number frame. Then the feature
vector derived using the proposed approach
becomes

Here, the last eighteen members of the feature
vector include the spectral dynamics of speech

X(m) = |x* (n— mN), 2 (m), cZ(m),... % (m), d, (M), 7, (m), 7, (m),.., sy (m)]

2 (n—-m)T
’[ 5, ] 2z(n—m)T
e cos| —————

(11)

5

signal concatenating the variation from the past
feature vector to the current one.

2.3 Classification Stage

The classification stage consists of one neural
network, which identifies the vowel, in cascade
with a parallel array of 5 neural networks, which
are used to identify the alaryngeal speech segment
to be changed by its equivalent normal speech
segment, as shown in Fig. 3. To this end, the
estimated feature vector, given by Eq. (14), is fed
into the first ANN (Fig. 3) to estimate the vowel
present in the segment under analysis. Once the
vowel is identified, the same feature vector is fed
into the five ANN structures of the second stage,
together with the output of the first ANN, to
identify the vowel-consonant combination
contained in the voiced segment under analysis.
Here, the output of the enabled ANN (Fig. 3)
corresponds to the codebook index of identified
segment. Thus, the first ANN output is used to
enable the ANN corresponding to the detected
vowel, disabling the other four; while the second
ANN is used to identify the vowel-consonant or
vowel-vowel combination. The ANN in the first
stage has 10 hidden neurons while the ANNs in the
second stage has 25.

(14)
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Figure 3. Pattern recognition stage. The first ANN indentifies the vowel present in the
segment and the other 5 ANNs identify the consonant-vowel combination.

The ANN training process is carried out in two
steps: First, the ANN used to identify the vowel
contained in the speech segment is trained in a
supervised manner using the backpropagation
algorithm. After the convergence is achieved, the
enabled ANN in the second stage, used to identify
the vowel-consonant or vowel-vowel combination
is also trained in a supervised manner using the
backpropagation algorithm; while the coefficients
vectors of the other 4 ANNs are kept constant. In
all cases, 650 different alaryngeal voiced segments
with a convergence factor equal to 0.009 are used,
achieving a global mean square error of 0.1 after
400,000 iterations. [16].

3. Evaluation results

Figure 4 shows the plot of mono-aural recordings
of the Spanish word “abeja”, pronounced by
normal and esophageal speakers with a sample
frequency of 8 kHz, respectively, including the
detected voiced segments. Figure 5 shows the plot
of the Spanish word “adicto” pronounced by an
esophageal speaker together with the plot of the
Spanish word “cupo”, in both cases the detected
voiced segments are shown. These figures show
that a correct detection is achieved using the
combination of several features, in this case zero
crossing, formats and pitch period.
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Figure 6 shows the ALT produced speech signal shown in Fig. 6(b). Figure 7 shows the ALT
corresponding to the Spanish word “cachucha” produced and restored signals, respectively,
(cap) together with the restored signal obtained corresponding to the Spanish word “hola” (hello),
using the system proposed, while the together with the corresponding spectrograms.

corresponding spectrograms of both signals are

1 : : : : :
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Figure 4. Detected voiced and unvoiced segments of (a) the normal speech signal
of the Spanish word “abeja” together with the detected vowels a, €, a, and (b) the
esophageal Spanish word “abeja”, together with the detected vowels a, e, a.
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Figure 5. Detected voiced and unvoiced segments of the esophageal speech signal of (a)
the Spanish word “adicto” together with the detected vowels 3, i, 0, and (b) the Spanish
word “cupo” together with the detected vowels u, o.
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Figure 6. (a) Waveforms trace corresponding to the Spanish word “Cachucha”, (Cap). i) ALT
produced speech, ii) restored speech. (b) Spectrograms trace corresponding to the Spanish word
“Cachucha” (Cap). i) Normal speech, ii) ALT produced speech, ii) restored speech.
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Figure 7. (a) Waveforms trace corresponding to the Spanish word “hola” (hello), i) ALT produced
speech, ii) restored speech. (b) Spectrograms trace corresponding to the Spanish word “hola”
(hello). i) Normal Speech, ii) ALT produced speech, iii) speech restored.
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To evaluate the actual performance of the system
proposed, two different criteria were used: the
bark spectral distortion (MBSD) and the mean
opinion scoring (MQOS). The bark spectrum L(f)
reflects the ear’s nonlinear transformation of
frequency and amplitude, together with the
important aspects of its frequency and spectral
integration properties in response to complex
sounds. Using the Bark spectrum, an objective
measure of the distortion can be defined using the
overall distortion as the mean Euclidian distance
between the spectral vectors of the normal
speech, L,(k,i), and the processed ones, L,(k,i),
taken over successive frames in an utterance as
follows [20], [21]:

(dB)
40 Ly (k)
35
30
5 -
25 L)
20
15
10
5

0

0 5 10 15 20 25 30 35 40 45 50 k

frames

Figure 8. Bark spectral trace of normal, Ln(n), and
enhanced, Lp(n), speech signals of the Spanish
word “hola”.

(dB)
sl|  Lntk)
o
e

Lptk)

20
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Figure 9. Bark spectral trace of normal, Ln(n), and
enhanced, Lp(n), speech signals of the Spanish word
“mochila”.

N M
3 [Ln i) - Ly P
MBSD = k=1=l (15)
>3 LAk
k=1li=1

where L,(k,i) is the Bark spectrum of the kth
segment of the original signal, L,(k,i) is the Bark
spectrum of the processed signal and M is the
number of critical bands. Figures 8 and 9 show the
Bark spectral trace of both, the ALT produced and
enhanced signals, respectively, corresponding to
the Spanish words “hola” (hello) and “mochila”
(bag). Here, the MBSD during voiced segments
was equal 0.2954 and 0.4213 for “hola” and
“mochila”, respectively, while during unvoiced
segments the MBSD was 0.6815 and 0.7829 for
“hola” and “mochila”, respectively. Here, the
distortion decreases during the voiced periods as
suggested by Eq. (15). Finally, an average MBSD
equal to 0.7575 and 0.4213 were obtained for
esophageal speech during unvoiced and voiced
segments, respectively, using the Spanish word
“Coca” (Coke), whose Bark spectral trace L,(k,i)
and Ly(k,i) are shown in Fig. 10. Evaluation results
using the Bark spectral distortion measures show
that a good enhancement can be achieved using
the method proposed.

(dB)42

Ly (%)
40
38
36
34
Lp(k)
32

30

28
1}

10 20 30 40 ] 80 |

Frames

Figure 10. Bark spectral trace of normal, Ln(n),
and enhanced, Lp(n), speech signals of the
Spanish word “Coca”.
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A subjective evaluation was also performed using
the Mean Opinion Scoring (MOS) in which the
system proposed was evaluated by 200 normal
speaking persons and 200 alaryngeal ones (Table 1
and Table 2), from the point of view of intelligibility
and speech quality. Here, 5 is the highest score
and 1 is the lowest one. In both cases the speech
intelligibility and quality evaluation without
enhancement are shown for comparison. These
evaluation results show that the system proposed
improves the performance of [2] which reports a
MOS of 2.91 when the enhancement system is
used and 2.3 without enhancement. These results
also show that, although the improvement is
perceived by the alaryngeal and normal speakers,
the improvement is larger in the opinion of
alaryngeal speakers. Thus, the system proposed is
expected to have quite a good acceptance among
the alaryngeal speakers because the system
proposed allows synthesizing several kinds of male
and female speech signals.

Finally, about 95% of alaryngeal persons
participating in the subjective evaluation reported
preferring to use the system during conversation.
The last result is quite similar to that reported in
[8] and [7]. Subijective evaluation shows that quite
a good performance enhancement can be
obtained using the system proposed.

Normal listener Alaryngeal listener

Quality | Intelligibility | Quality | Intelligibility
MOS 291 2.74 3.42 3.01
Var 0.17 0.102 0.16 0.103

Normal listener Alaryngeal listener

Quality | Intelligibility | Quality | Intelligibility
MOS | 2.30 2.61 2.46 2.80
Var | 0.086 0.12 0.085 0.11

Table 1. Subjective evaluation of esophageal speech
without enhancement.

Table 2. Subjective evaluation of proposed alaryngeal
speech enhancement system

The performance of the voiced segments classification
stage was evaluated using 450 different alaryngeal
voiced segments from which the system failed to
classify correctly 22 segments, which represents a
misclassification rate of about 5% using a network as
identification method, while a misclassification of about
7% was obtained using the HMM. The comparison
results are given in Table 3. Finally, to evaluate the
behavior of the method proposed, it was compared
with the performance of several other wavelet
functions whose evaluation results are shown in Table
4. Evaluation results show that the methods proposed
perform better than other wavelet based feature
extraction methods.

Identification Normal Alaryngeal
Method Speech Speech
ANN 98% 95%
HMM 97% 93%

Table 3. Recognition performance using two different
identification methods using the feature extraction
method proposed.
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Method Daub 4 Haar Mexican hat Morlet
proposed wavelet wavelet wavelet wavelet
Recognition 95% 75% 40% 79% 89%
rate

Table 4. Performance of different wavelet based feature enhanced methods when an ANN is
used as identification method.

4, Conclusions

This paper proposed an alaryngeal speech
restoration system suitable for esophageal and ALT
produced speech based on a pattern recognition
approach in which the voiced segments are
identified and replaced by equivalent segments of
normal speech contained in a codebook. The
voiced segments are estimated using an ANN
whose input vector is obtained using wavelet
functions derived using the inner ear model
developed by Zhang [17]. Evaluation results
provided in Figs. 4 to 10 show the fairly good
voiced segments detection and restoration
performance of the algorithm proposed. It follows
from the fact that the spectrograms of enhanced
and normal speech signals are quite similar.
Objective and subjective evaluation results, using
the MBSD and the MOS criteria, are given which
shows that the system proposed provides a good
improvement in the intelligibility and quality of
alaryngeal speech signals. Evaluation results also
show that the feature extraction method proposed
provides better detection performance than other
widely used methods when used with ANN as well
as HMM. Evaluation results show that the system
proposed, which presents a flexible structure that
allows it to enhance esophageal as well as artificial
laryinx produced speech signals [2] without further
modifications, is an attractive alternative to
enhance alaryngeal speech signals. The system

proposed could be used to enhance alaryngeal
speech in several practical situations such as in
telephone and teleconference systems, improving
in such way the voice and life quality of alaryngeal
persons.
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